Presenilin influences glycogen synthase kinase-3 β (GSK-3β) for kinesin-1 and dynein function during axonal transport.
نویسندگان
چکیده
Within axons, molecular motors transport essential components required for neuronal growth and viability. Although many levels of control and regulation must exist for proper anterograde and retrograde transport of vital proteins, little is known about these mechanisms. We previously showed that presenilin (PS), a gene involved in Alzheimer's disease (AD), influences kinesin-1 and dynein function in vivo. Here, we show that these PS-mediated effects on motor protein function are via a pathway that involves glycogen synthase kinase-3β (GSK-3β). PS genetically interacts with GSK-3β in an activity-dependent manner. Excess of active GSK-3β perturbed axonal transport by causing axonal blockages, which were enhanced by reduction of kinesin-1 or dynein. These GSK-3β-mediated axonal defects do not appear to be caused by disruptions or alterations in microtubules (MTs). Excess of non-functional GSK-3β did not affect axonal transport. Strikingly, GSK-3β-activity-dependent axonal transport defects were enhanced by reduction of PS. Collectively, our findings suggest that PS and GSK-3β are required for normal motor protein function. Our observations propose a model, in which PS likely plays a role in regulating GSK-3β activity during transport. These findings have important implications for our understanding of the complex regulatory machinery that must exist in vivo and how this system is coordinated during the motility of vesicles within axons.
منابع مشابه
GSK‐3β Phosphorylation of Cytoplasmic Dynein Reduces Ndel1 Binding to Intermediate Chains and Alters Dynein Motility
Glycogen synthase kinase 3 (GSK-3) has been linked to regulation of kinesin-dependent axonal transport in squid and flies, and to indirect regulation of cytoplasmic dynein. We have now found evidence for direct regulation of dynein by mammalian GSK-3β in both neurons and non-neuronal cells. GSK-3β coprecipitates with and phosphorylates mammalian dynein. Phosphorylation of dynein intermediate ch...
متن کاملEndogenous GSK-3/shaggy regulates bidirectional axonal transport of the amyloid precursor protein.
Neurons rely on microtubule (MT) motor proteins such as kinesin-1 and dynein to transport essential cargos between the cell body and axon terminus. Defective axonal transport causes abnormal axonal cargo accumulations and is connected to neurodegenerative diseases, including Alzheimer's disease (AD). Glycogen synthase kinase 3 (GSK-3) has been proposed to be a central player in AD and to regula...
متن کاملInsulin signaling regulates a functional interaction between adenomatous polyposis coli and cytoplasmic dynein
Diabetes is linked to an increased risk for colorectal cancer, but the mechanistic underpinnings of this clinically important effect are unclear. Here we describe an interaction between the microtubule motor cytoplasmic dynein, the adenomatous polyposis coli tumor suppressor protein (APC), and glycogen synthase kinase-3β (GSK-3β), which could shed light on this issue. GSK-3β is perhaps best kno...
متن کاملAlzheimer's presenilin 1 mutations impair kinesin-based axonal transport.
Several lines of evidence indicate that alterations in axonal transport play a critical role in Alzheimer's disease (AD) neuropathology, but the molecular mechanisms that control this process are not understood fully. Recent work indicates that presenilin 1 (PS1) interacts with glycogen synthase kinase 3beta (GSK3beta). In vivo, GSK3beta phosphorylates kinesin light chains (KLC) and causes the ...
متن کاملGlycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells
Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2014